<u>FFR angio</u> <u>Accuracy vs.</u> <u>Standard</u> FFR (FAST-FFR) Trial

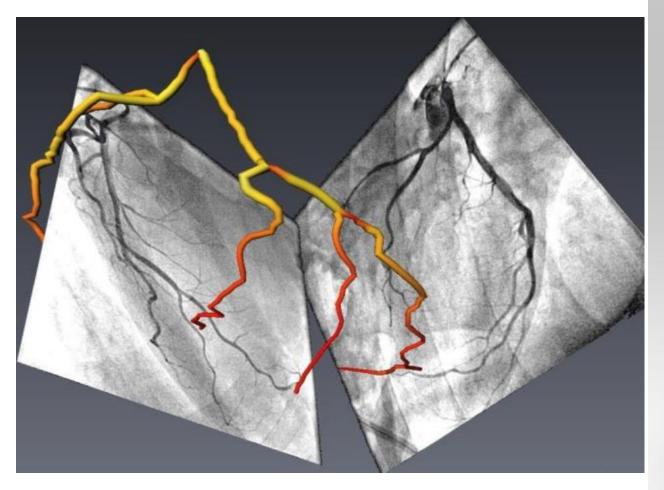
William F. Fearon, MD Professor of Medicine Director, Interventional Cardiology Stanford University School of Medicine

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Grant/ Research Support:	<u>Company</u> Abbott, Medtronic, CathWorks,
Consulting Fees/Honoraria:	
Major Stock Shareholder/Equity Interest:	
Royalty Income:	
Ownership/Founder:	
Salary:	NIH R61 HL139929-01A1 (PI)
Intellectual Property Rights:	
Other Financial Benefit:	Stock Options HeartFlow

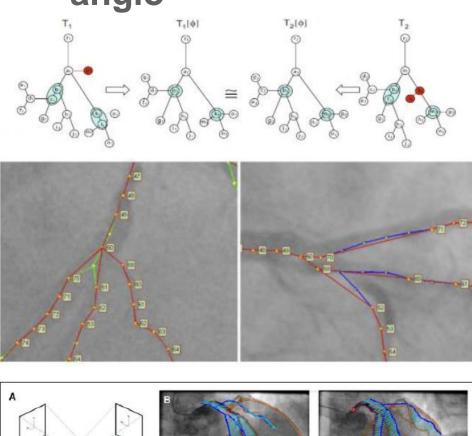
Why We Don't Perform FFR



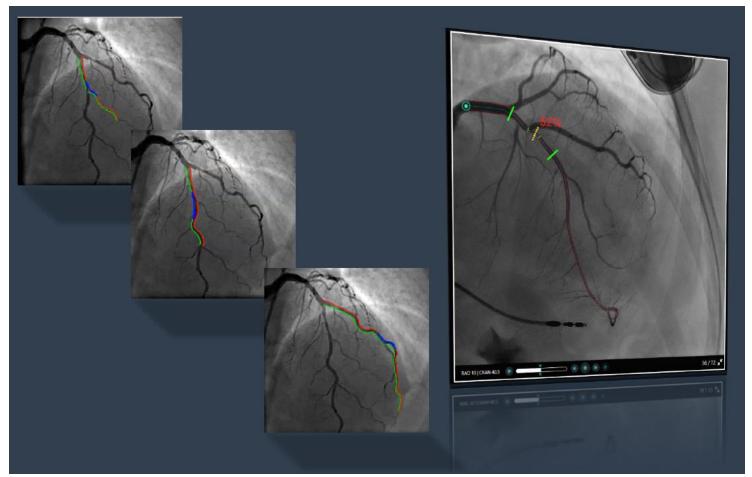
- It takes time...
- Wire handling characteristics...
- Pressure drift is frustrating...
- Side effects of adenosine...
- It is expensive...
- There is a small risk...

Coronary Pressure Wire

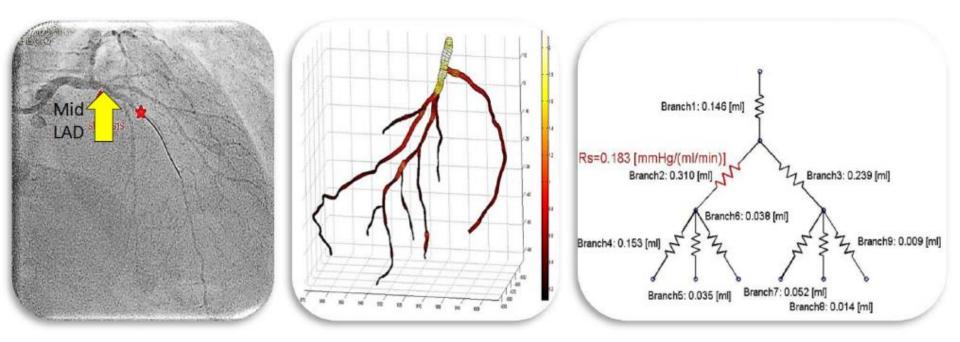
FFRangio



Courtesy of CathWorks

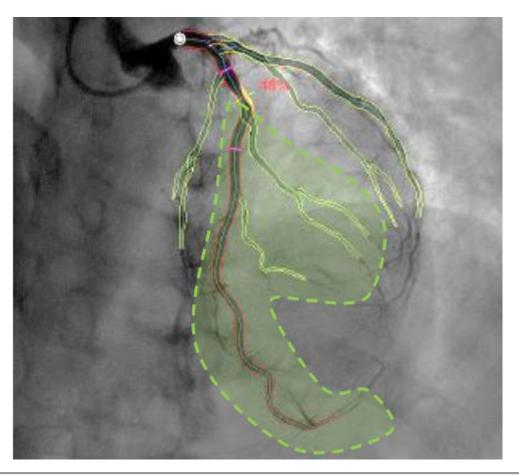

The 3D engine contains a compensation mechanism which uses all available projections to account for respiratory and cardiac motion and optimizes the 3D reconstruction.

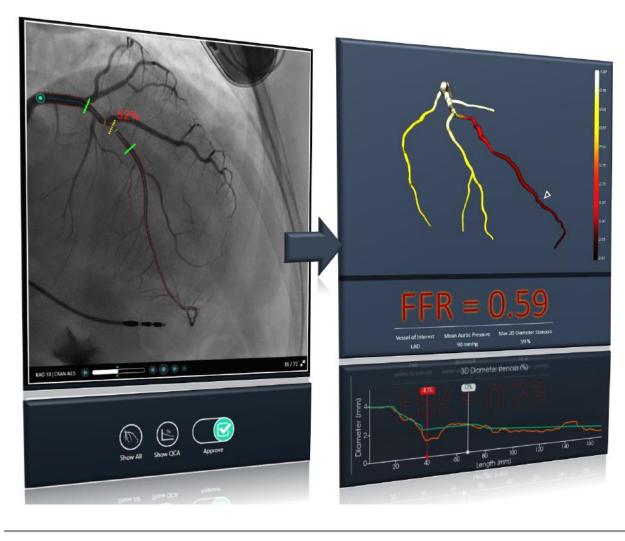
Automatic stenosis detection by scanning the entire 3D reconstruction



Courtesy of CathWorks

FFRangio

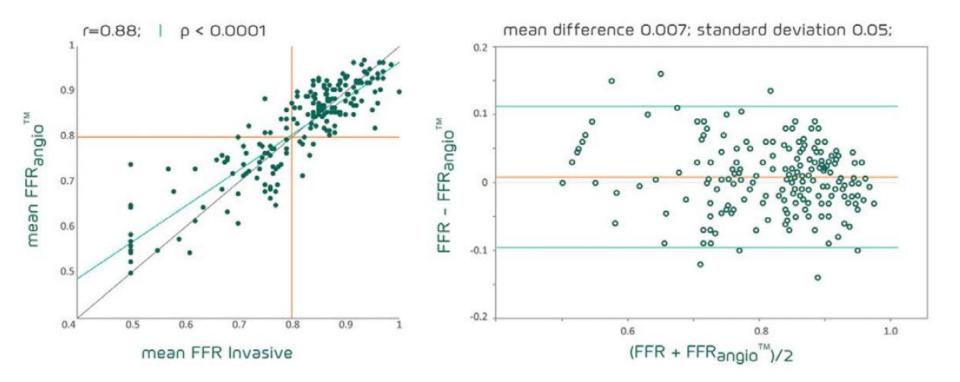

The coronary arterial network is modeled as an electrical circuit with each segment acting as a resistor. The vessel resistance is estimated based on its length and diameter. Each vessel's contribution to flow is based on its impact on overall resistance depending on the arrangement.



Normal maximal flow is estimated based on the volume of coronary vessels and total coronary length.

Courtesy of CathWorks

FFR_{angio} is then calculated as the ratio of the maximal flow rate in the stenosed artery compared with the flow rate in the absence of the stenosis:


$$FFR_{angio} = Q_S / Q_N$$

Courtesy of CathWorks

FFRangio **Data**

FFR_{angio} compared with invasive FFR in 203 lesions (184 patients)

Sensitivity, specificity and accuracy of FFR_{angio} was 88%, 95% and 93%

Pellicano, et al. Circ Cardiovasc Interv 2017;10:e005259.

<u>FFR_{angio} <u>A</u>ccuracy versus <u>ST</u>andard <u>FFR</u></u>

Rationale:

FFR_{angio} has not been well validated when performed on-site by independent, local operators blinded to pressure wire-derived FFR and compared with core laboratory analyzed FFR values in a large, prospective, multicenter fashion.

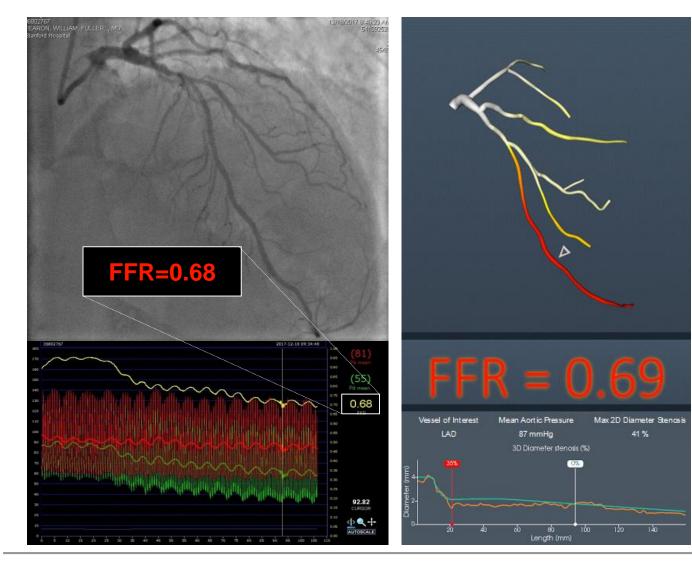
Exclusion Criteria

- STEMI within the last 12 months
- Prior CABG, valve surgery or heart transplant
- Severe aortic stenosis
- Known LVEF ≤45%

FAST FFR Trial Endpoints

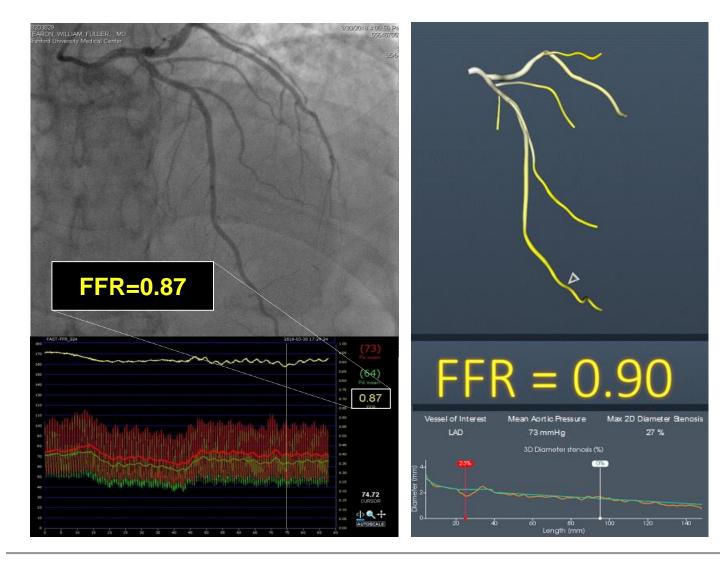
Co-Primary Endpoints

- Lower bound of the 95% CI of the sensitivity and specificity for dichotomously scored FFR_{angio} measured index per vessel as compared with wire-derived FFR.
 - Performance goal for sensitivity = 0.70
 Performance goal for specificity = 0.75


FAST FFR Trial Endpoints

Secondary Endpoints

- Diagnostic accuracy of FFR_{angio}
- Correlation between FFR_{angio} and FFR
- FFR_{angio} device success



FFR_{angio} **Case Examples**

FFR_{angio} **Case Examples**

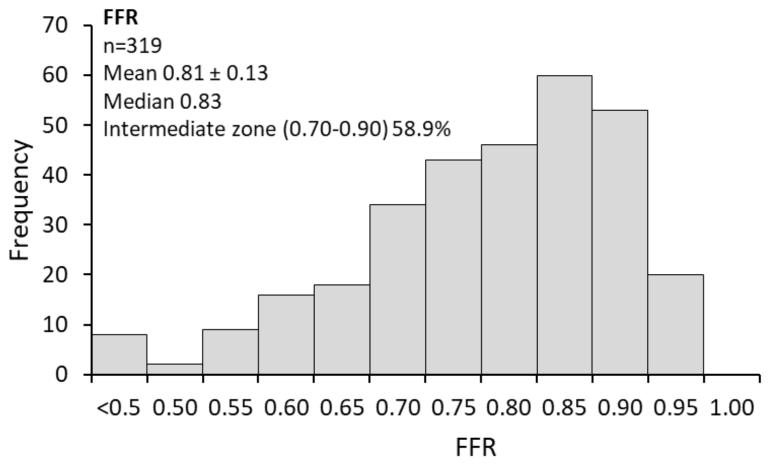
FAST FFR Trial *Patient Characteristics*

Baseline Characteristic	n=301 patients
Age	64.7 ± (9.7)
Male	74.1%
Body Mass Index (kg/m ²)	$28.9 \pm (4.8)$
Hypertension	69.1%
Hypercholesterolemia	76.4%
Diabetes Mellitus	31.9%
Smoking (current or former)	52.8%
Left Ventricular Ejection Fraction (LVEF)	58 ± (6)%
Family history of coronary artery disease	39.3%
Prior STEMI	3.3%
Prior PCI with stent	29.2%
Presentation	
Acute coronary syndrome (UA or NSTEMI)	41.9%
Stable patients	57.2%

Circulation 2019;139:477-84

Lesion Characteristics

Angiographic Result	n=319 vessels	
Lesions per patient	1.1 ±0.3	
Target Vessel		
LAD	54.2%	
RCA	24.1%	
LCX	19.1%	
Ramus	2.5%	
% Diameter Stenosis (Visual)	63 ±17%	
% Diameter Stenosis (QCA)	51 ±10%	
Lesion and Vessel Characteristics		
Bifurcation	17.3%	
Moderate/Severe Tortuosity	5.5%	
Moderate/Severe Calcification	19.9%	
Lesion Class B or C	88.8%	


FFR and FFR_{angio} Results

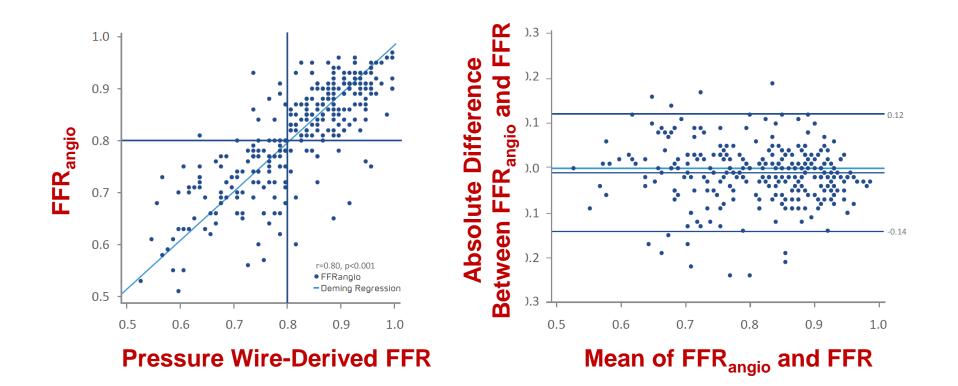
Physiologic Result	FFR	FFR _{angio}
Mean	0.81 ± (0.13)	$0.80 \pm (0.12)$
Median	0.83 (0.74, 0.90)	0.82 (0.73, 0.89)
% of positive lesions (≤ 0.80)	43.3%	45.5%
% within 0.70-0.90	58.9%	63.6%
% within 0.75-0.85	31.3%	31.0%

FFR_{angio} was successfully measured in 98.7% of cases



FFR and FFR_{angio} Results

FFR and FFR_{angio} Results



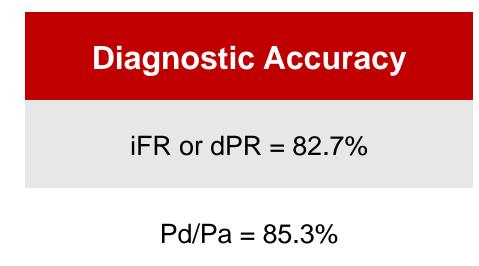
Co-Primary and Secondary Endpoints

Diagnostic Characteristic		
Sensitivity	93.5% (87.8, 96.6)	
Specificity	91.2% (86.0, 94.6)	
Diagnostic accuracy	92.2% (88.7, 94.8)	
Positive Predictive Value	89.0% (82.6, 93.2)	
Negative Predictive Value	94.8% (90.3, 97.3)	

Correlation and Bland-Altman

Features of Discordant Results

Characteristic	Concordant (N = 277)	Discordant (N = 24)	P value
Age	64.7 ± (9.7)	64.6 ± (9.8)	0.52
Male	74.1%	73.3%	0.28
Body Mass Index (kg/m ²)	$28.9 \pm (4.8)$	28.8 ± (4.9)	0.07
Hypertension	69.1%	69.0%	0.85
Hypercholesterolemia	76.4%	76.5%	0.87
Diabetes Mellitus	31.9%	32.1%	0.77
Smoking (current or former)	52.8%	53.4%	0.48
Left Ventricular Ejection Fraction (LVEF)	58 ± (6)%	58 ± (6)%	0.99
Family history of coronary artery disease	39.3%	39.9%	0.53
Presentation			
Acute coronary syndrome (UA or NSTEMI)	41.5%	45.8%	0.68
Stable patients	44.8%	33.3%	0.28


Features of Discordant Results

Characteristic	Concordant (N = 297)	Discordant (N = 25)	P value
Ta <u>rget vessel</u>			
LAD	55.9%	32.0%	0.03
RCA	22.6%	40.0%	0.04
LCX	19.5%	20.0%	0.14
Ramus	2.0%	8.0%	0.09
% Diameter Stenosis (Visual estimation)	63 ± (17)	$63 \pm (9.8)$	0.88
Mean FFR	0.80 ± (0.13)	0.83 ± (0.07)	0.16
FFR ≤ 0.80	43.9%	36.0%	0.42
Mean FFRangio	0.80 ± (0.12)	0.79 ± (0.08)	0.52
FFRangio ≤ 0.80	43.9%	64.0%	0.05

Substudy

Which correlates better with wire-based FFR: a non-hyperemic pressure ratio (e.g., iFR, dPR, or Pd/Pa) or FFR_{angio}?

FFR_{angio} = 92.4%

Johnson, et al. J Am Coll Cardiol 2019;in press.

Substudy

- Physiologically, these results imply that "simulated hyperemia" outperforms "assumed hyperemia" even when disadvantaged by an indirect computation of coronary pressure.
- Practically, these findings suggest that centers wishing to avoid wire-based FFR for whatever logistical or clinical reasons would be better served by abandoning pressure wires completely and instead by employing FFR derived from the angiogram.

Summary

FFR derived from routine coronary angiography (FFR_{angio}) had very high sensitivity, specificity and diagnostic accuracy, all of which were greater than 90% for predicting the reference standard, coronary pressure wire-derived FFR.

- FFR_{angio} and FFR remained highly correlated over the entire range of FFR values.
- FFR_{angio} was successfully measured in almost all cases included.

Conclusion

- FFR_{angio} may provide an easier and potentially faster method for performing physiology guided assessment of the overall coronary angiogram with similar accuracy to the reference standard, coronary pressure wire-based FFR.
- This may translate into a greater percentage of patients undergoing physiologic guidance for revascularization decisions and ultimately improve long-term outcomes.

